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a b s t r a c t

For high-Reynolds number flows, the lattice Boltzmann method suffers from numerical
instabilities that can induce local blowup of the computation. The von Neumann stability
analysis applied to the LBE-BGK and LBE-MRT models shows that numerical instabilities
occur in the high wavenumber range and are due to the interplay between acoustic modes
and some other modes. As it is done in the LBE-MRT model, an increase of the bulk viscos-
ity is an efficient way of damping spurious oscillations. However, this stabilization method
induces an over-damping of acoustic waves. Some selective spatial filters can be used in
order to eliminate the spurious small spatial scales without affecting the large scale phys-
ical modes. Three different lattice Boltzmann algorithms based on filtering step are pro-
posed: the fully filtered LBE, the LBE with filtered macroscopic quantities and the LBE
with filtered collision operator. The behavior of several explicit filter stencils is studied
in the Fourier space. For a given filter stencil, the filtered collision operator approach leads
to the highest cut-off wavenumber. In this case, the theoretical wavenumber-dependent
viscosity is mðkÞ ¼ c2

s ðs=½1� rf ðkÞ� � 1=2Þ where f ðkÞ is the filter shape and r the filter
strength. Under-resolved simulations (high Reynolds number) are performed on the case
of the doubly periodic shear layers. The performance of the three filtered LBE is found to
be the same as the MRT model for stability control. Propagation of acoustic plane waves
is also simulated with the three filtering algorithms. The measured dissipation of acoustic
wave compares well with the theoretical results.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The lattice Boltzmann method (LBM) is a powerful technique for the computational modeling of a wide variety of com-
plex flow problems [1]. The LBM solves the mesoscopic kinetic equation for particle distributions gaðx; ca; tÞ, where x and ca

are the particle position and velocity vector, respectively, in phase space ðx; caÞ and time t, and where the macroscopic quan-
tities (velocity and density) are obtained through moment integration of gaðx; ca; tÞ. The most popular used LBM equation is
the single-relaxation-time LBE-BGK model [1]:
gaðxþ ca; t þ 1Þ ¼ gaðx; tÞ �
1
s

gaðx; tÞ � geq
a ðx; tÞ

� �
ð1Þ
. All rights reserved.
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where geq
a is the equilibrium distribution functions. Through Chapman–Enskog multi-scale expansion [1], the non-linear

compressible Navier–Stokes equations can be recovered from the simple LBE-BGK equation based on the assumptions that
the Mach number is small. The fluid viscosity is related to the relaxation time s through the relation m ¼ c2

s ðs� 1=2Þwhere cs

is the sound speed. A well-known stability condition requires that the relaxation time be greater than one-half that corre-
sponds to zero viscosity. The expression of m suggests that LBM is capable of operating at arbitrarily high-Reynolds number
by chosing the relaxation time sufficiently close to 1/2. However, in this low-viscosity regime, LBM suffers from numerical
instabilities that induce unphysical negative values of particle distributions [2]. Moreover, numerical instability waves are
often generated by unadapted initial conditions, geometric singularities or in region where large numerical approximations
are done (e.g. at the interface of grid refinements). In industrial applications several of these numerical defaults being pres-
ent, thus computations often become catastrophically unstable. Many solutions have thus been proposed to improve the sta-
bility of LBM.

A straightforward idea is to impose a global or local lower bound of the relaxation time s as it is done in the commercial
LBM code PowerFLOW [2,3]. This leads to a lower effective Reynolds number compared to the expected one. This important
drawback can be limited by using only a local increase of the relaxation time to insure the positivity of distribution functions
[2,4]. But in both approaches, the physical fluid viscosity is modified. An other idea is to add numerical dissipation. For in-
stance, upwind interpolation used in the fractional propagation LB scheme proposed by Qian [5] and Fan et al. [6] introduces
numerical viscosity, sometimes called hyper-viscosity. Niu et al. [7] showed that the Interpolation-Supplemented LBM
(ISLBM) and the Taylor-Series-Expansion Least-Squares-Based LBM (TLLBM) improve the numerical stability by increasing
hyper-viscosities when non-uniform grids are used.

Recent developments of the entropic LBM [8] are attempts to improve stability properties through compliance with a dis-
crete entropy H-theorem. In the same spirit, Brownlee et al. [9] proposed a technique to stabilize the LBM by monitoring the
non-equilibrium entropy production defined by SðgeqÞ � SðgÞ. The main idea is to impose an entropy limiter at points for
which the non-equilibrium entropy production exceeds a specified threshold value. Intense and localized corrections [9]
can be applied, but smooth functions can be also used to control the additional dissipation [10]. Additional improvements
and some theoretical insights are given in [11]. In particular, the most effective choice for the entropy limiter function is
shown to be the median entropy filter. It is based on the detection and damping of the strongest non-equilibrium entropy
spatial fluctuations. It can be considered as a low-pass filter because it is only active when rapid spatial variation of the non-
equilibrium entropy is detected at the nearby neighbors of each grid point. But, unlike selective filter proposed in this paper,
this entropy limiter, as well as all the other limiter functions [11] and entropic LBM [8], induces a local modification of the
global relaxation parameter. Even if the limiter functions can be very spatially selective, the dissipation is added on all phys-
ical wavelengths.

Dellar [12] showed that an enhanced bulk viscosity is useful to improve the numerical stability. In the standard single-
relaxation-time model, the bulk and shear viscosities are fixed by the same relaxation time s. Therefore, Dellar proposed a
method that allows the bulk viscosity to be adjusted independently from the shear viscosity by adding a term proportional to
the local fluid divergence to the discrete equilibrium distribution. In a more general way the multiple-relaxation-time mod-
els [13,14] allow the separation of the relaxations of the various physical and kinetic modes. This separation of relaxation
rates is known to be the determining feature of the better stability of LBE-MRT models. In the first part of this paper, we will
show that the stability improvement obtained by the LBE-MRT models is associated with an increase of the bulk viscosity
that damps out the unphysically-excited acoustic modes. As in Dellar’s model, the physical bulk viscosity is artificially in-
creased to get better stability. Even if this stabilization strategy does not modify the effective Reynolds number, it is not suit-
able for all kind of simulations. For instance, in Computational Aeroacoustics (CAA), propagation of acoustic waves must be
calculated accurately. It has been shown that lattice Boltzmann method is an effective scheme to simulate aeroacoustic phe-
nomena [3,15,16] and then a new method is proposed in this work to stabilize LBM simulations without affecting the phys-
ical shear and acoustic waves. The idea is based on the use of selective spatial filters that are studied and optimized in the
Fourier space. It is worth noting that even if the selective filtering approach is presented in the framework of numerical sta-
bility control, the same algorithms can be used in lattice Boltzmann-based Large Eddy Simulations (LES). For instance, selec-
tive filters (test filters) are required for the application of dynamic subgrid-scale turbulence models [17]. Large Eddy
Simulations that use explicit filtering to replace the dissipative effect of the unresolved subgrid scales are also based on this
kind of filters [18].

Presentation of the von Neumann stability analysis of the standard LBE-BGK and LBE-MRT models is reported in Section 2.
Several spatial filters are studied in Section 3 and three different filtering strategies are analyzed in the Fourier space. In the
last section, the filtering approaches are validated on two benchmark problems.
2. Stability of lattice Boltzmann models with von Neumann analysis

The best way to get insight into stability properties of numerical schemes is to perform a linear stability analysis. The von
Neumann method is a classical tool to evaluate the linear stability of numerical schemes and it has been applied in the past
to study the standard lattice Boltzmann schemes [19,20], the LBE-MRT scheme [14] and other LBE schemes developed for
non-uniform grids [7]. In this section the von Neumann method is quickly presented and is applied on the LBE-BGK and
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LBE-MRT model in order to emphasize the causes of the numerical instability growth. In Section 3, this analysis will be also
used to investigate filtering effects.

2.1. The von Neumann analysis applied to the LBE-BGK and LBE-MRT models

The von Neumann analysis can be applied to any lattice Boltzmann model but only 2D nine-speed models (D2Q9) are
studied for the sake of simplicity. The standard form of the LBE-BGK model is given by Eq. (1) with the equilibrium functions
geq

a :
geq
a ðx; tÞ ¼ qxa 1þ ca � u

c2
s
þ ðca � uÞ2

2c4
s
� juj

2

2c2
s

 !
ð2Þ
where xa are weighting factors.
The first step is to linearize the lattice Boltzmann equation (1). The distribution functions ga are expressed as the sum of a

mean part gð0Þa and a small fluctuation part g0aðx; tÞ. The mean flow is supposed to be uniform and steady. The non-linear
terms of the lattice Boltzmann equation are introduced by products of macroscopic quantities in the equilibrium function
(2). This function must be linearized using a Taylor expansion [21]:
geq
a gð0Þa þ g0a
� �

¼ geq;ð0Þ
a þ @geq

a

@gb

�����
ga¼gð0Þa

g0a þ o g0a
� �2
� �

ð3Þ
The linearized lattice Boltzmann equation is then obtained by substituting this expression (3) into (1) and removing the
mean part.

The von Neumann analysis consists in looking for an harmonic plane wave solution of the linearized equation:
g0aðx; tÞ ¼ haeiðk�x�xtÞ ð4Þ
With this assumption, the linearized LBE-BGK equation becomes:
e�ixh ¼ Mh ð5Þ
with M ¼ MBGK ¼ A�1 I � 1
s NBGK

h i
where I is the identity matrix and A and NBGK are defined by:
Aab ¼ eik�ca dab; NBGK
ab ¼ dab � Geq

ab; Geq
ab ¼

@geq
a

@gb

�����
ga¼gð0Þa

ð6Þ
The coefficients of matrix MBGK depend on three parameters which are the relaxation time s, the wavenumber k½kx; ky; kz� and
the mean flow U0½Ux;Uy;Uz�. The evaluation and simplification of MBGK can be done with a symbolic mathematical software
such as Maple, particularly for the term Geq

ab.
Solutions h of Eq. (5) are the eigenvectors of the matrix MBGK. Lallemand and Luo [14] use successive approximation of the

matrix A in term of k to solve analytically the eigenvalue problem. In the present work, solutions are calculated numerically
using linear algebra package LAPACK. The eigenvectors represent the different modes that are supported by the scheme. The
transport coefficients of modes are the eigenvalues ka ¼ expð�ixÞ. Both eigenvectors and eigenvalues depend on the param-
eters of the matrix MBGK. In particular, the transport coefficients depend on the wavenumber xðkÞ ¼ i lnðkaðkÞÞ. The adimen-
sional wavenumber vector k represents the number of points per wavelength Nppw:
k ¼ 2p
k

Dx ¼ 2p
Nppw

ð7Þ
In the Chapman–Enskog procedure, the space-time discretization error is neglected. In other words, the Chapman–Enskog
procedure supposes that Dt ! 0;Dx! 0 which is equivalent to k! 0ðNppw !1Þ. On contrary, the von Neumann analysis
allows us to take into account space-time discretization errors: these errors make the transport coefficients dependent on
the wavenumber [16].

In analogy with the von Neumann analysis of the Navier–Stokes equations [22], the macroscopic transport coefficients are
related to the eigenvalues as follows:
Re½x�ðkÞ� ¼ kð�csðkÞ þ U0ðkÞÞ
Im½x�ðkÞ� ¼ �k2 1

2
2D�2

D mðkÞ þ gðkÞ
� �

(
ð8Þ

Re½xSðkÞ� ¼ kU0ðkÞ
Im½xSðkÞ� ¼ �k2mðkÞ

(
ð9Þ
where m is the shear viscosity, g is the bulk viscosity. The superscript ± denotes the acoustic modes and S is related to the
shear mode.
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The multiple-relaxation-time model [13,14] has been proposed as an alternative to the standard BGK model. In this mod-
el, the collision step is performed in a moment space whereas the propagation step is done in the discrete velocity space. The
mapping between the moment space and the discrete velocity space is achieved by a transformation matrix P such that
m ¼ Pg. The main advantage of this approach is that a different relaxation time sa can be applied for each moment ma. In
particular, the bulk and shear viscosities can be tuned independently. As it will be shown below, the stability improvement
obtained with the MRT model results from the increase of the bulk viscosity that damps out numerical waves.

In MRT models, the single-relaxation-time s of Eq. (1) is replaced by a diagonal matrix S containing the relaxation times:
Fig. 1.
expecte
(upstre
S ¼ diag
1
s1
; . . . ;

1
sN

� �
ð10Þ
and the general form of the MRT equation is:
gðxþ c; t þ 1Þ ¼ gðx; tÞ � P�1S½mðx; tÞ �meqðx; tÞ� ð11Þ
In classical MRT [14] the moment equilibrium function meq can be deduced from a modified equilibrium function that has
been defined in order to reduce the compressible behavior of the LBM [23]. As the acoustic propagation is concerned in this
work, the fully compressible equilibrium function given by Eq. (2) is used in our MRT model instead of the incompressible
one:
meq ¼ Pgeq
In this case, the linearized MRT collision operator can be expressed directly using the linearized collision operator of the LBE-
BGK model NBGK. We have:
NMRT ¼ PNBGKP�1 ð12Þ
With this expression, the matrix M of Eq. (5) becomes:
MMRT ¼ A�1½I � P�1SPNBGK� ð13Þ
2.2. Stability analysis

The eigenvalue problem Eq. (5) is solved using the LBE-BGK matrix with 1=s ¼ 1:99 and using the LBE-MRT matrix with
the relaxation times proposed by Lallemand and Luo [14]:
S ¼ diag½0;1:64;1:54;0;1:9; 0;1:9;1:99;1:99�
The two last relaxation parameters 1=s8 and 1=s9 are equal to the relaxation parameter of the LBE-BGK model in order to
impose the same shear viscosity. For both models, the mean velocity is set to U0 ¼ ½0:2; 0;0� and solutions are calculated only
for wavenumbers along the x-axis ðk ¼ kxÞ. The real and imaginary parts of the angular frequency xðkÞ are plotted as a func-
tion of the wavenumber in Figs. 1 and 2. In Fig. 1, we see that the dispersion curves are almost the same for both models. On
the contrary, the dissipation curves are very different (Fig. 2(a) and (b)). The nine eigenvalues are plotted on these graphs but
only three modes have a physical significance (the two acoustic modes and the shear mode). The other eigenvalues are
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related to unphysical modes (kinetic modes). Note that points at ReðxÞ ¼ p and ReðxÞ ¼ �p represent the same kinetic
mode. The theoretical transport coefficients predicted by the Chapman–Enskog procedure are also represented. The theoret-
ical propagation speed is U0 for the shear mode and �cs þ U0 for the acoustic modes. The theoretical shear viscosity is
m ¼ c2

s ðs� 0:5Þ for the LBE-BGK scheme and m ¼ c2
s ðs8 � 0:5Þ for the MRT model. The bulk viscosity of the LBE-BGK scheme

is linked to the shear viscosity by the relation gBGK ¼ 2
D m. The MRT bulk viscosity is more flexible: gMRT ¼ 2

D c2
s ðs2 � 0:5Þ.

In the low wavenumber range, the calculated dispersion curves match well the theoretical ones. Above k � p=2 a discrep-
ancy between the theoretical and real dispersion relations appears. It can be shown that this dispersion error is due to the
space-time discretization of the discrete velocity Boltzmann equation (see [16] for more details). As we can see in Fig. 2, the
space-time discretization scheme also implies an error in term of dissipation. The MRT model uses quite large relaxation
times for the kinetic modes and the acoustic modes therefore the dissipation of these modes is much larger than in the
LBE-BGK model.

In the previous configuration, all the modes are damped ðReðxÞ < 0Þ therefore the numerical stability is ensured. By vary-
ing the angle h between the wavenumber k and the x-axis, some positive damping rates can be found for the LBE-BGK model.
The unstable regions in the plane ðkx; kyÞ are plotted in Fig. 3. The same calculation for the LBE-MRT model shows that the
damping rates are always negative. In order to study more precisely the cause of instabilities in the LBE-BGK model, the dis-
persion and dissipation of the three physical modes are plotted in Fig. 4 for h ¼ h1 ¼ 38�. For wavenumber above p=2, the
dispersion error of acoustics modes is quite important. At wavenumber k ¼ k1, the angular frequency of the positive acoustic
mode becomes equal to that of the shear mode. It is clear in Fig. 4(a) that the sudden increase of one of the damping rate that
we can see in Fig. 4(b) is associated with this mode coincidence. In this example, it seems that there is an energy transfer
from the acoustic mode to the shear mode. The shear damping rate becomes positive while the acoustic damping rate greatly
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Fig. 3. Linearized LBE-BGK model: maximum positive values of the damping rate ReðxÞ obtained for various wavenumbers with U0 ¼ Ux ¼ 0:2. Isocontours
from 0.001 to 0.02 by step of 0.004. The dashed line corresponds to jkj ¼ p=2, i.e. four points per wavelength.
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decreases. However, as the modes are merged in the wavenumber range around k1, the numerical eigenvalue calculation
does not provide a reliable separation of the two modes.

It is quite surprising to observe interplay between modes because the equation system has been linearized around a uni-
form mean flow. In standard stability analysis of the linearized hydrodynamic equations, mode coupling appears only when
there is gradient in the mean flow. It is worth noting that in the linearized lattice Boltzmann equation the mode interplay is
not due to a physical coupling between shear and acoustic modes. Instead, mode coalescence is the consequence of space
and time discretization errors. Indeed, the von Neumann linear analysis of discrete velocity Boltzmann equation shows
[16] that, in absence of discretization errors, mode coalescence never occurs because the theoretical dispersion relations
are perfectly recovered.

As for h ¼ 0 (Fig. 1), the dispersion curves of the LBE-MRT for h ¼ 38� are exactly the same as the dispersion curves of the
LBE-BGK model. The mode coincidence also occurs at k ¼ k1. The dissipation curves of the LBE-MRT model with the standard
relaxation times are shown in Fig. 5(a). The dissipation rates remain negative in spite of the mode coalescence. Now, the va-
lue of the second relaxation time s2 is set to s2 ¼ s in order to have the same bulk viscosity in both LBE-BGK and LBE-MRT
models. For this new set of parameters, the dissipation rate exhibits some positive range (Fig. 5b). In particular, we recover
the instability region around k ¼ k1. One can also show that the two other positive bumps around k � p=2 are due to the
interplay between the two acoustic modes and two kinetic modes. Therefore, we can conclude that the remarkable stability
property of the LBE-MRT model is provided by the high value of the bulk viscosity. This approach is very useful for simulating
flows for which acoustic phenomena are not taken into account. On contrary, it is not well suited for Computational Aero-
acoustics (CAA) applications [24].

3. Selective filtering of the lattice Boltzmann equation

Because the unstable modes we have observed in the previous section have a large wave vector k (see Fig. 3), some kind of
spatial filtering technique may be used as a practical means of reducing the effect of instabilities in LBE simulations. The idea
of modifying the hydrodynamic equations by introducing artificial viscosity terms to damp the amplitude of spurious oscil-
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Fig. 5. Linearized LBE-MRT model: (a) dissipation for the standard values of relaxation times and (b) dissipation with 1=s2 ¼ 1:99 as a function of the
wavenumber for h1 ¼ 38� . (�) shear mode; (+) positive acoustic mode; (M) negative acoustic mode. The theoretical curves are also represented (same
representation as in Figs. 1 and 2).
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lations near discontinuities was originally proposed by von Neumann and Richtmyer [25] in the context of the Euler equa-
tions. This approach is now widely used when low numerical viscosity schemes are to be used. In particular, it is the case in
the field of Computational Aeroacoustics [24].

3.1. General presentation of selective filters

The general expression of the filtering operation h�i for a given variable v is given by:
hvðxÞi ¼ vðxÞ � r
XD

j¼1

XN

n¼�N

dnvðxþ nxjÞ ð14Þ
where N is the number of points of the damping stencil and xj are the unit vectors of the D-dimensional Cartesian coordinate
system (D ¼ 2 in this work). The parameter r fixes the strength of the filter. It is a constant between 0 and 1, it will be set to
0.1 in the following.

The coefficients dn are such as dn ¼ d�n in order to ensure that the filtering operation does not introduce dispersion error
[26]. The standard approach [27] for determining dn consists in cancelling the terms resulting from the Taylor series of Eq.
(14) for k! 0. In this way, the standard selective filters using 5, 7, 9, . . . points can be defined. Skordos [28] used a fourth
order filter based on the 5-point stencil. In order to achieve a wavenumber cut-off as sharp as possible in the high wavenum-
ber region, Tam et al. [26] optimized the filter coefficients dn in the Fourier space. This optimization deteriorates the damping
behavior, which should be as small as possible, in the low wavenumber range. In the same spirit, Bogey and Bailly [29] devel-
oped optimized 9-, 11-, and 13-point damping stencils. The standard 5-point filter used by Skordos referred as SF-5, the stan-
dard 7-point filter referred as SF-7, the 7-point stencil of Tam referred as Tam-7 and the 9-point stencil optimized by Bogey
and Bailly referred as Bogey-9 will be tested in the following. The filter coefficients are given in Appendix.

In the following part, we will discuss the various possible approaches to introduce the selective filter in the lattice Boltz-
mann algorithm.

3.2. Fully filtered lattice Boltzmann equation

The first straightforward idea is to filter the distribution functions. The formula
hgaðx; tÞi ¼ gaðx; tÞ � r
X

j

X
n

dngaðxþ nxj; tÞ ð15Þ
is applied at each time iteration while the rest of the algorithm remains unchanged. The lattice Boltzmann method with fil-
tered distribution functions can be described as follows:

(1) Calculate the new distribution function gaðx; tÞ using the standard LBE-BGK scheme (collision, propagation, . . .)
(2) Replace the distribution functions by their filtered values given by Eq. (15)
(3) Calculate the macroscopic variables with the filtered distribution functions:
hqðx; tÞi ¼
P
hgaðx; tÞi

hquiðx; tÞi ¼
P

ca;ihgaðx; tÞi

	
ð16Þ
In Eq. (15), the distribution functions gaðx; tÞ are calculated with the standard LBE-BGK scheme applied on the filtered dis-
tribution functions of the previous time step:
gaðx; tÞ ¼ hgaðx� ca; t � 1Þi � 1
s
hgaðx� ca; t � 1Þi � gheqi

a ðx� ca; t � 1Þ
� �

ð17Þ
Substituting this expression of ga in Eq. (15), we obtain the fully filtered lattice Boltzmann equation. By applying the von
Neumann analysis on this new equation, the matrix M of the eigenvalue problem Eq. (5) becomes:
Mhgai ¼ ð1� rf ÞA�1 I � 1
s

NBGK
� �

ð18Þ
with the filter function f defined as:
f ðkÞ ¼
X

j

X
n

dneink�xj ð19Þ
Fig. 6 presents the dispersion and the dissipation of the lattice Boltzmann equation filtered with the standard 7-point stencil.
As expected, the dispersion relation is not modified by the filter. In particular, the coupling between the positive acoustic
mode and the shear mode still occurs. In the dissipation graph, the sudden increase of the damping rate of all eigenvalues
between k ¼ p=4 and k ¼ p=2 is clearly visible. Since all the distribution functions are filtered, the damping effect is nearly
the same on all modes. The dissipation increase insures that the eigenvalue imaginary parts remain negative in the wave-
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number range where the mode coupling occurs. In order to study more precisely the cut-off wavenumber, the dissipation is
plotted in log-scale in Fig. 7. The results obtained with the four filters presented in the previous section are shown. For the
sake of simplicity, only the shear mode and the positive acoustic mode are represented. Moreover, the dissipation rate is di-
vided by k2 in order to obtain the effective viscosity coefficients. Firstly, we see that the bulk and shear viscosities of the stan-
dard LBE-BGK model without filter are non-constant. As for the dispersion relation, this wavenumber dependency of the
viscous coefficients is due to space-time discretization errors [16]. As already mentioned in Fig. 6(b), the effect of the filters
is nearly the same for the shear and acoustic modes. As expected, the cut-off wavenumber of the standard 7-point stencil is
higher than that of the 5-point stencil. For a given number of points, the optimization procedure allows to define filters with
higher cut-off wavenumber compared to standard filters. Unfortunately, the filter Tam-7 has too high dissipation in the low
wavenumber range and should not be used for our applications. The best filter (but also the most expensive in term of com-
putational effort) is the Bogey-9 filter: it is nearly non-dissipative up to k � p=2:3ðNppw � 4:6Þ. In the rest of the paper, only
the standard 7-point filter will be used for theoretical studies and validations.

In this part, the filtering operator has been directly applied to distribution functions. Other filtering strategies can be pro-
posed in the framework of LBM.

3.3. Lattice Boltzmann equation with filtered macroscopic quantities

In the previous part, the fully filtered lattice Boltzmann equation has been established that describes the evolution of the
filtered distribution function toward the equilibrium function gheqi

a . This equilibrium function is calculated from the filtered
macroscopic variables defined by Eq. (16). It can be written as:
gheqi
a ¼ hqixa 1þ ca � ~u

c2
s
þ ðca � ~uÞ2

2c4
s
� j

~uj2

2c2
s

 !
ð20Þ
where the filtered velocity is given by:
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~u ¼ hqui
hqi
This expression looks like the well-known Favre averaging used in LES theory. In the fully filtered lattice Boltzmann equation
both the distribution functions and macroscopic variables are filtered. A new approach can be defined by filtering the mac-
roscopic variables only. Combining Eqs. (16) and (15), the filtered macroscopic variables can be expressed as:
hqðx; tÞi ¼ qðx; tÞ � r
P

j

P
n

dnqðxþ nxj; tÞ

hquiðx; tÞi ¼ quiðx; tÞ � r
P

j

P
n

dnquiðxþ nxj; tÞ

8><
>: ð21Þ
The main advantage of this new method is that the calculation of the filtered distribution functions is not needed. The gain in
term of computational cost is obvious. Following steps now define the new algorithm:

(1) Calculate the new distribution functions using the standard LBE-BGK scheme Eq. (1)
(2) Calculate the macroscopic variable from the new distribution functions
(3) Replace the macroscopic variables by their filtered values Eq. (21)

Using Eqs. (20) and (21), the new linearized matrix can be calculated:
Mgheqi
a
¼ A�1 I � 1

s
ðI � ð1� rf ÞGeqÞ

� �
ð22Þ
The dissipation curves obtained with this new matrix are shown in Fig. 8(a). As for the fully filtered lattice Boltzmann equa-
tion, the numerical stability is provided by the dissipation increase in the high wavenumber range. The maximum value of
the dissipation rate around k ¼ k1 is slightly higher than the theoretical viscosity dissipation but it remains negative. Of
course a greater damping level at this wavenumber can be obtained by using a larger value of strength filter parameter
r. We also remark that the filtering effect is not the same for all modes. This traduces the fact that kinetic and physical
modes are not linked to the macroscopic quantities in a straightforward way.

3.4. Lattice Boltzmann equation with filtered collision operator

In the first approach, the full distribution functions are filtered. In the second one, distribution functions are relaxed to-
ward filtered equilibrium quantities but the non-equilibrium parts of distribution functions gneq

a ¼ ga � geq
a remain free. Even

so, numerical instabilities often occur in high shear flow region [12] where the distribution functions evolve too far from
their equilibrium values. Therefore, it seems interesting to apply the selective filter on the non-equilibrium parts of the dis-
tribution functions. Since the non-equilibrium functions are dynamically determined by the collision operator, the filtering
scheme can be apply on this term of the lattice Boltzmann equation. The third algorithm is:

(1) Calculate the filtered collision operator �hgneq
a ðx; tÞi=s

(2) Calculate the new distribution functions using the BGK equation with the filtered collision operator:
hgaðxþ ca; t þ 1Þicoll ¼ gaðx; tÞ �
1
s
hgneq

a ðx; tÞi ð23Þ
(3) Calculate the macroscopic variables with the new distribution functions hgaðxþ ca; t þ 1Þicoll
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For the von Neumann analysis, the matrix of the eigenvalue problem becomes:
Fig. 9.
filter; (
simulat
M
ghcolli
a
¼ A�1 I � ð1� rf Þ

s
NBGK

� �
ð24Þ
Fig. 8(b) shows the mode dissipation curves induced by this third filtering technique. Again, the eigenvalue imaginary parts
remain negative in the whole wavenumber range despite the energy transfer between the positive acoustic mode and the
shear mode near the mode coincidence.

We notice that the matrix given in Eq. (24) is the same as that obtained for the standard LBE-BGK model where the relax-
ation time s has been replaced by s=ð1� rf Þ. Therefore, neglecting the dissipation error related to the space-time discreti-
zation, an approximate expression of the effective viscosity can be proposed:
mðkÞ ¼ c2
s

s
1� rf ðkÞ �

1
2


 �
ð25Þ
When applied on the collision operator, the effect of the selective filter can be predicted without von Neumann analysis. The
Fourier transform of the filter stencil, which can be easily calculated, is only needed. The validity of the Eq. (25) will be con-
firmed in the next part (see Fig. 9).

4. Validation on simple flows

We performed numerical experiments to measure the effective viscosity of the two dimensional nine-speed lattice Boltz-
mann model with the three filtering approaches. We also investigated the effect of the selective viscosity filters on an under-
resolved simulation of a Kelvin Helmholtz instability. Both sets of experiments were performed using periodic boundary
conditions.

4.1. Dissipation of sound waves

An acoustic plane wave of wavenumber k ¼ kx ¼ 2p=N is initialized in a periodic square domain of size N � N. There is no
mean flow ðU0 ¼ 0Þ and the relaxation parameter is set to 1=s ¼ 1:99. The initial perturbation magnitude is sufficiently small
to ensure that the propagation stays in the linear regime.

The effective dissipation rate is measured from the decay of the density magnitude. The sinus time signal is wrapped by
an exponential dissipation function. The effective viscosity is then calculated by a least squares fit of a straight line to the
logarithm of the wrapping function. Simulations have been done for the standard LBE-BGK model and for the three filtered
LBE-BGK models. Results are shown in Fig. 9. The theoretical effective bulk viscosity obtained by the von Neumann analysis
is also represented for each model. The agreement between the theoretical dissipation curves and the measured ones is very
good. In this figure, the expression Eq. (25) is also plotted and the agreement with the measured viscosity for the filtered
collision operator model is excellent for low wavenumber. At high wavenumbers, the effective viscosity is not very well pre-
dicted by Eq. (25) because this equation does not take into account the space-time discretization error.

It is interesting to note that even if the same filter (SF-7) is used for the three models, the effective viscosity does not
exhibit the same spectral behavior. The filtered collision operator model allows to obtain the higher cut-off wavenumber.
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The most dissipative model is the filtered macroscopic variable model. Of course, for all models, increasing the number of
filter points would allow to construct more selective, spectral-like filters.

As shown in Figs. 6(b) and 8 the dissipation of modes subjected to a given filtering approach is nearly the same for all
modes. Therefore, it is expected that the efficiency ranking of the three filtering strategies for shear wave dissipation be
the same as that observed for sound wave dissipation. This can be checked on a simple shear flow.

4.2. The doubly periodic shear layers

Minion and Brown [30] studied the performance of various numerical schemes in under-resolved simulations of the 2D
incompressible Navier–Stokes equations. Dellar [12] also used this simple flow for the validation of its enhanced bulk vis-
cosity LBE model. This simulation is interesting because there is no boundary condition (stability deeply depends on the
accuracy and numerical implementation of boundary conditions). Numerical instabilities occur when the shear layers begin
to roll-up after some thousand of time step. It is expected that initialization process does not modify the main stability prop-
erties of the run. Initial conditions correspond to a perturbed shear layer:
Fig. 11.
operato
ux ¼
U0 tanhð4ðy� 1=4Þ=wÞ; y 6 1=2;
U0 tanhð4ð3=4� yÞ=wÞ; y > 1=2;

	
uy ¼ U0d sinð2pðxþ 1=4ÞÞ;
q ¼ q0

ð26Þ
in the doubly periodic domain 0 6 x; y 6 1. For sufficiently thin shear layer, the parameter w approximates the initial shear
layer width. With w ¼ 0:05 and a 128� 128 grid, there is around 7 points across the shear layer. The parameter d ¼ 0:05
controls the magnitude of the initial perturbation. The viscosity is m ¼ 0:0001 and the Mach number is M ¼ 0:04. The two
shear layers are expected to roll up due to a Kelvin Helmholtz instability excited by the OðdÞ perturbation in uy. With a
128� 128 grid, the shear layer between the Kelvin Helmholtz vortices becomes under-resolved due to stretching as the large
vortices roll up. Minion and Brown [30] found that conventional numerical schemes using centered differences became
unstable for this under-resolved flow. Even with ‘‘robust” or ‘‘upwind” Navier–Stokes numerical schemes that suppress
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grid-scale oscillations, Minion and Brown showed that two spurious secondary vortices are produced at the thinnest points
of the two shear layers. As shown in Fig. 10(a), the same behavior is found with the standard LBE-BGK scheme. The numerical
instabilities occur around the secondary shear layer rolling up. As the acoustic waves are not concerned in this simulation,
the LBE-MRT model with high bulk viscosity ð1=s2 ¼ 1:64;g ¼ 0:0366Þ can be used to simulate the reference solution (see
Fig. 10(b)).

The same flow is then simulated with the three filtered lattice Boltzmann models. For all models, the 7-point stencil is used
with r ¼ 0:01. The results are displayed in Fig. 11. All filtering approaches lead to stable runs but a careful analysis of the vor-
ticity field in the vortex core shows that the numerical diffusion is not the same for the three models. The less dissipative mod-
el is obtained with the filtered collision operator while the most dissipative model is the filtered macroscopic variable model.
This result is consistent with the previous conclusions drawn from the simulations of acoustic wave damping.

5. Conclusions

For many applications, the LBE-MRT models and the enhanced bulk viscosity model proposed by Dellar can be well suited
for stability control. With these models, the dynamic behavior of flows that are only sensitive to shear viscosity is un-
changed. These stabilization models are based on an over-damping of acoustic waves. Indeed, the linear stability analysis
shows that numerical instabilities are due to the interplay between the acoustic modes and the shear mode or other kinetic
modes. The von Neumann stability analysis also shows that this mode coupling occurs for wavelength smaller than 4 grid-
points. This is why the selective filtering approach is particularly adapted for stability control in LBM. The selective viscosity
filtering method proposed in this work damps unphysical instabilities without affecting physical shear and acoustic waves.
One other advantage of this approach is that the spatial filters can be used as explicit filters in the framework of Large Eddy
Simulations.

Three different strategies are proposed to insert some well-known explicit filter stencils into the lattice Boltzmann algo-
rithm. All the three filtering approaches need only few modifications of the standard LBE-BGK scheme. Using a linear analysis
in the Fourier space, the dissipative effect of each filtering approach is evaluated as a function of the wavenumber. For a gi-
ven filter stencil, the higher cut-off wavenumber is obtained with the filtered collision operator model. For this model, the
wavenumber-dependent viscosity can be explicitly expressed as a function of the filter shape (Eq. (25)).

All the developments made in this paper are based on the D2Q9 model but the conclusions concerning the stability
behavior are also valid for standard 3D models such as the D3Q19 model [31]. High wavenumber instabilities can be also
damped using exactly the same filtering algorithms [31]. As the number of distribution function is quite large in 3D, it
can be interesting to use the filtered macroscopic quantities approach in order to minimize the computational cost.

In addition to the non-negligible increase of the computational effort, the main drawback of the selective filter schemes is
the lost of spatial locality. This drawback is less crippling when block-structured meshes with large grid-blocks are used.
Moreover, it is to be noted that some optimized non-centered selective filters and non-uniform grid filters have been pro-
posed [32]. As for the centered schemes, these filters can be easily implemented in the framework of lattice Boltzmann meth-
od. They can be useful for physical boundary treatments and for the management of the interfaces between two grid levels in
multiple-scale meshes.

In a general way, it is difficult to give the optimal filtering strategy and the best filter stencil and strength coefficient r
because it depends on the simulation parameters (Reynolds number, boundary condition accuracy, . . .). For example, simu-
lations of noise generated by flow oscillations over rectangular cavities have been performed [15] using the standard 7-point
damping stencil with r ¼ 0:1. The filter was applied on the macroscopic variables. The Reynolds number based on the cavity
length was 132,000 and the relaxation time was very close to one-half ðs ¼ 0:50016Þ.

Appendix. Selective filters

Coefficients of the explicit selective filters ðd�n ¼ dnÞ:
SF-5
 SF-7
 Tam-5
 Bogey-9
d0
 6/16
 5/16
 0.287392842460
 0.243527493120

d1
 �4/16
 �15/64
 �0.226146951809
 �0.204788880640

d2
 1/16
 3/32
 0.106303578770
 0.120007591680

d3
 �1/64
 �0.023853048191
 �0.045211119360

d4
 0.008228661760
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