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Evolution de l'idée de calcul sur réseau
Aspects historiques



Evolution de l'idée de calcul sur réseau

Principe d'un automate Cellulaire: 
"Evolution d'un état local en fonction de l'état de son voisinage."

1951: Concept de J.v.Neumann

1969: Zuse: Les lois physique sont discrètes ?

1970: Jeu de la Vie (ConWay)

1973: Modèle HPP pour simuler le 
comportement d'un fluide.

1983: Wolfram: Analyse systématique des AC

Les automates Cellulaires

Von-Neumann S.Ulam K.Zuse J.Conway S.Wolfram



Evolution de l'idée de calcul sur réseau

Principe des gazs sur réseau (LGCA):
 "Mise à jour algorithmique d'une variable entière pour décrire la dynamique d'un gaz."

1986: Modèle FHP

1987: Modèle FCHC

1988: Lien avec l'équation de Boltzmann (McNamara et Zanetti)

1989: Passage à des variables réelles.

Les gaz sur réseau

U.Frisch B.Hasslacher Y.Pomeau



Evolution de l'idée de calcul sur réseau

Idée générale:

Les lois physiques sont suffisamment locales pour être correctement 
décrites sur un réseau. 

Description mésoscopique engendre des effets à grande échelle.

Lien avec la physique statistique

Objectifs du cours:

o Comprendre les liens entre la LBM et l'équation de Boltzmann
o Comprendre les spécificités de l'algorithme LBM
o Connaître les forces et les faiblesses de la méthode
o Programmer et Appliquer la méthode sur des cas simples en lien avec 

la mécanique des fluides.



Travaux pratiques:

Les Travaux Pratiques sont sous forme de Notebook Jupyter. Les fichiers notebook sont à 
télécharger sur le moodle du cours. (fichier .ipynb)

Le principal avantage des notebooks est qu’ils peuvent contenir plusieurs types de contenu comme 
du python, du latex, du html. 

Les comptes-rendus de TP peuvent donc être rédigés sous forme de notebook.
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L’équation de Boltzmann

Ludwig Boltzmann
1844-1906

Fluide = ensemble de particules se 
mouvant à des vitesses c différentes

Approche statistique d’un écoulement:

Formalisme de la physique statistique :

Densité de particules ayant une vitesse c au point x et au temps t.

L’évolution des fonctions de distribution f est régie par 
l’équation de Boltzmann: 



Propagation des 
particules

Forces 
extérieurs

négligées

Collision entre 
les particules

En prenant en compte toutes les valeurs de vitesses possibles pour les particules on 
peut facilement remarquer le lien entre la densité du fluide et les fonctions de 
distribution:  

Somme de toutes les fonctions de distribution en un point.

De manière analogue, on a:

Vitesse en un point

Energie interne et énergie cinétique

Ce sont les « moments » des fonctions de distribution

L’équation de Boltzmann



L’opérateur de collision: Effet statistique des collisions entre particules.
Historiquement Boltzmann défini cet opérateur en considérant les particules 

comme des sphère dures et en faisant certaines hypothèses de collision élastiques, il 
arrive au résultats:

=> Forme complexe de l’opérateur. Les hypothèses de construction ne permettent 
pas la description des gaz denses (même l’air)…. Pas très adapté à 
l’aérodynamique. Par contre, bon pour la description des gaz de faible densité (haute 
atmosphère). 

Il faut trouver une autre façon de décrire l’effet des collisions.

Après collision Avant collision

L’équation de Boltzmann



Après collision Avant collision

« Quel serait la forme des fonctions de distribution qui annule l’opérateur de 
collision ? »
 « Que se passe-t-il lorsque le gaz est en équilibre thermodynamique (pas de 
collision entre particule) ? »

On peut montrer que les fonctions de distributions à l’équilibre vérifient une propriété 
d’invariant de collision. Elles peuvent alors s’écrire sous la forme:

C’est la distribution de Maxwell-Boltzmann

L’équation de Boltzmann



En 1954, Bathnagar Gross et Krook, proposent de définir un opérateur de collision 
très simple traduisant le fait qu’après une collision, les particules atteignent un 
équilibre en un temps caractéristique lambda. Ils définissent alors:

C’est l’opérateur de collision BGK

Dans ces conditions, l’équation de Boltzmann s’écrit:

C’est l’équation de Boltzmann-BGK

L’équation de Boltzmann



Le Développement de Chapmann Enskog
« Quel est le liens entre l’équation de Boltzmann-BGK et les équations de Navier-Stokes ?»

On peut commencer à répondre en constatant que:

Equation de continuité 
(conservation de la masse)



Problème: P et q dépendent des fonctions de distributions. On ne peut donc pas calculer 
explicitement leur valeur. 
Pour ça, Chapman et Enskog proposent une technique de fermeture en développant les 
fonctions de distribution en terme du nombre de Knudsen.

Le Nombre de 
Knudsen

Exprime le rapport entre le libre parcourt 
moyen des particules et une dimension 

caractéristique.

L Le libre parcourt moyen défini la distance 
moyenne durant laquelle les particules ne 

subissent aucune collision

>1 peu d’effet des collisions sur 
l’obstacle
(gaz de faible densité)

<1 fort effet des collisions sur l’obstacle 
(gaz dense)

Le Développement de Chapmann Enskog



Le Développement de Chapmann Enskog

On peut faire apparaître le nombre de Knudsen dans l’équation de Boltzmann-BGK en 
utilisant des grandeurs sans dimension:



Développement en nombre de Knudsen des fonctions de distribution:

On peut alors injecter ce développement dans l’équation de Boltzmann-
BGK en gardant les termes d’ordre 0 et 1 et identifier les termes de même 
ordre en epsilon:

Termes en

Termes en

Termes en

Le Développement de Chapmann Enskog



Ainsi à l’ordre 0 en epsilon on trouve

Que l’on peut expliciter puisqu’ils dépendent cette 
fois de la fonction d’équilibre (qui est connue), on 
trouve:

=> On retrouve les équations d’Euler !

Et à l’ordre 1 en epsilon on trouve

On trouve cette fois:

=> On retrouve les équations de Navier-Stokes en posant:

Coeff de viscosité Coeff de diffusivité 
thermique

Le Développement de Chapmann Enskog



Conclusion:

 - Les équations d’Euler sont une approximation de l’équation de 
Boltzmann-BGK à l’ordre 0 en nombre de Knudsen.

- Les équations de Navier-Stokes sont une approximation de 
l’équation de Boltzmann-BGK à l’ordre 1 en nombre de Knudsen.

Les équations de la mécanique des milieux continues sont valables pour les 
faibles nombres de Knudsen

 c’est-à-dire 
pour les milieux suffisamment denses par rapport à la taille de l’objet étudié. 

Le Développement de Chapmann Enskog
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Les polynômes d'Hermite

Version scalaire: Version vectorielle:



Les polynômes d'Hermite

Version scalaire: Version vectorielle:



Les polynômes d'Hermite

Idée de Grad (1949): Développer la distribution d'équilibre en polynômes d'Hermite.

On peut facilement montrer que les premiers coefficients correspondent aux 
premiers moments de la fonction d'équilibre.



Les polynômes d'Hermite

Exemple développement à l'ordre 2:

Hypothèse isotherme:



La quadrature de Gauss-Hermite
abscisses

poids

Si

On peut donc trouver des vitesses discrètes      telles que:

! Polynômes scalaires 



Discrétisation des Vitesses

But: Résoudre numériquement l’équation de Boltzmann-BGK !

Problème: Les variables c représentent les vitesses des particules et varient 
dans un espace continue de dimension infini (toutes les valeurs réelles 
possibles)

Condition: Il faut donc restreindre l’espace des vitesses à un ensemble discret 
et fini ! 

Comment ?: En utilisant un développement polynomial de la fonction d’équilibre 
et une quadrature de Gauss. Il faut donc assurer l’égalité des moments 
continues et discrets:

Moments continues Moments discrets

Solutions de la quadrature de Gauss-Hermite

Nombre de 
vitesses 
discrètes



Les vitesses discrètes sont donc obtenues en résolvant la quadrature de Gauss. En 
pratique on utilise un produit de D quadratures 1D pour résoudre un problème à D 
dimension. Il existe plusieurs solutions entraînant différentes valeurs de q (Cf TP0)

On obtient toujours qD vitesses discrètes ou D est le nombre de dimensions 
d’espace.

  q=5 : Egalité des moments jusqu’à l’ordre 4 => 125 vitesses discrètes qui 
dépendent de la Température => Non acceptable.

Hypothèse isotherme:

  q=4 : Egalité des moments jusqu’à l’ordre 3 => 64 vitesses mais incompatibilité de 
maillage cubique.

  q=3 : Egalité des moments jusqu’à l’ordre 2 => 27 Vitesses mais erreur sur les 
moments d’ordre 3:

Limitation à l’étude des 
écoulements à faible nombre de 
Mach (faiblement compressible)

Discrétisation des Vitesses



Discrétisation des Vitesses

D1Q3

D1Q2

D2Q9

D2Q4

D3Q27

D=1

En pratique on s'arrange pour que les vitesses discrètes coïncident avec des points de 
maillages:

D=2 D=3

Moments conservés 
jusqu'à l'ordre 1

Moments conservés 
jusqu'à l'ordre 2



Ainsi, dans l’hypothèse des écoulements isothermes faiblement compressibles, on peut 
résoudre l’équation de Boltzmann-BGK à vitesses discrètes:

Ou la fonction d’équilibre s’écrit:

Les coefficients dépendent du modèle choisit.
Les moments se calculent alors facilement de façon discrète:

Discrétisation des Vitesses



En 3D, on peut montrer que certaines vitesses du modèle à 27 vitesses ne « servent » 
à rien. On peut alors utiliser 19 vitesses seulement, c’est le modèle D3Q19 (3 
dimensions et 27 vitesses)

Les coefficients sont alors donnés par:

Quadrature d'ordre 3:

Discrétisation des Vitesses



Discrétisation de l’espace et du temps
Equation de Boltzmann-BGK à vitesses 
discrètes mais continue en espace et en temps.

Certaines études utilisent les méthodes de discrétisation classiques (schéma en espace et en 
temps avec différences finies ou volume finis). Mais on peut remarquer que le membre de 
gauche de l’équation est linéaire et représente une équation de propagation. Ainsi on peut utiliser 
une discrétisation dans laquelle l’espace et le temps sont couplés, traduisant le fait que les 
particules se déplacent à une vitesse caractéristique c. On obtient alors:

couplage

Calcul de l’intégrale avec la méthode des trapèzes
+ changement de variable

Equation de Boltzmann sur réseau (LBM pour Lattice Boltzmann Method)



Discrétisation de l’espace et du temps

La LBM impose (par construction) 
un maillage structuré uniforme 
carré en 2D ou cubique en 3D

En pratique, la LBM fixe un certain nombre de 
paramètres :

     La vitesse du son liée au réseau s’exprime sous la 
forme:

   Le fluide simulé possède donc un coefficient 
gamma égale à l’unité. Ceci n’est pas très restrictif sous 
les hypothèses de faible compressibilité 



L’algorithme de la LBM s’écrit en unité réseau (Lattice Unit):

On choisit de faire une simulation dans un domaine L comportant Nx mailles 
d’un fluide de viscosité donnée nu. La vitesse du son est également fixée à c0.
On a donc:

Permet de calculer 

Fixé

Conséquence: Le CFL est toujours 
constant et vaut:

Discrétisation de l’espace et du temps
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Algorithme LBM 

On décompose l'algorithme principal en 2 étapes bien distinctes:

La Collision

La Propagation

ou

Cette étape est locale elle ne 
nécessite aucune lecture des 
voisins. Elle est donc très 
rapide.

Bien que ces deux étapes soient théoriquement identiques, elles présentent des différences 
d'exécution en fonction du type de machine utilisée.

Ce type d'algorithme "Stream & Collide" présente une efficacité redoutable sur les 
machines modernes.



Algorithme LBM 

La Collision

La Propagation

ou

Evaluation des temps de calcul de l'algorithme:

Nombre de points Nombre d'itérations

MLUPS
Mega Lattice Updates Per Second



Algorithme LBM 
Algorithme générale:

1. Initialisation du domaine physique (rho et u)

2. Calcul de 

3. Initialisation des fonctions de distributions:

4. Boucle temporelle

=

Calcul  des moments

Calcul  de l’équilibre:

Calcul  des conditions aux limites

Collision

Propagation



Etat pré-Collision

Itération n
Exemple avec 4 vitesses:

Calcul de l’opérateur de collision en chaque point => Les nouvelles fonctions de distributions sont connues

Collision et propagation



Collision

Itération n
Exemple avec 4 vitesses:

Calcul de l’opérateur de collision en chaque point => Les nouvelles fonctions de distributions sont connues

Collision et propagation



Collision et propagation

Itération n
Exemple avec 4 vitesses:

Propagation



Itération n+1
Exemple avec 4 vitesses:

Propagation des fonctions sur les mailles voisines

Collision et propagation

Etat pré-Collision



Conditions aux limites

paroi

Aux frontières du domaine de calcul (paroi, entrée, sortie…) 
certaines fonctions de distribution sont inconnues.

?
?

?

paroi

? ? ?

En LBM les conditions aux limites doivent prescrire les 
quantités mésoscopiques aux frontières du domaine.



paroi

?
?

?

paroi

? ? ?

Conditions aux limites
Aux frontières du domaine de calcul (paroi, entrée, sortie…) 
certaines fonctions de distribution sont inconnues.

En LBM les conditions aux limites doivent prescrire les 
quantités mésoscopiques aux frontières du domaine.



Plusieurs techniques sont utilisées:

1 – Conditions périodiques: 

Conditions aux limites

?
?

?

? ? ?

Les vitesses rentrantes deviennent les vitesses sortantes à l'opposé du domaine. 



2– On remplace les fonctions inconnues par leur symétrique à la paroi 
avant la collision (Bounce-back method):

1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0

Rebond sans frottement:
1’=3
5’=6
8’=7

Rebond avec frottement:
1’=3
5’=7
8’=6

Conditions aux limites



3– On remplace les parties hors-équilibre par leur symétrique (Bounce-
back hors équilibre):

Conditions aux limites

Vitesse symétrique

Nécessite la connaissance des grandeurs 
macroscopiques à la paroi.



Calcul de la densité à la paroi:

Conditions aux limites

Connues

1

2

3

4

56

7 8

0

Inconnues



3– Techniques utilisant une fonction d’équilibre modifiée à la paroi:

 - On prend une valeur particulière de taug=1 à la paroi:

=1

 - Pour que le schéma reste juste, on définit une nouvelle 
fonction d’équilibre à la paroi prenant en compte les gradients 
amonts.

- On calcul les coefficients de cette nouvelle fonction d’équilibre 
grâce à l’égalité des moments.

-  On calcul la nouvelle fonction d’équilibre en fixant par 
exemple une vitesse nulle à la paroi.

Conditions aux limites



4– Techniques type frontière immergées (Immersed-Boundary):

 On utilise le terme de « forcage » de l’équation de Boltzmann. 
L'algorithme devient:

Avec: (Guo et al. 2002)

Le terme de forçage est calculé en fonction de la 
condition aux limites à imposer et appliqué aux points 
voisins de la paroi.

Conditions aux limites

Forçage "macro" lié à la 
présence d'une paroi. 



Raffinement des maillages
Les maillages LBM sont toujours structurés et utilisent souvent le raffinement en octree:

Principe: 

 Diviser une zone en 4 zones 
égales (en 2D) ou 8 zones (en 3D).

  Deux zones adjacentes ont un 
rapport de taille 2 au maximum.



Les maillages LBM sont toujours structurés et utilisent souvent le raffinement en octree:

Raffinement des maillages



Les maillages LBM sont toujours structurés et utilisent souvent le raffinement en octree:

Raffinement des maillages

Nécessité d'interpoler les 
nouvelles distributions 

Interpolation temporelle

Interpolation spatiale



Les maillages LBM sont toujours structurés et utilisent souvent le raffinement en octree:

Raffinement des maillages
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Les maillages LBM sont toujours structurés et utilisent souvent le raffinement en octree:
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Les maillages LBM sont toujours structurés et utilisent souvent le raffinement en octree:

Raffinement des maillages



En pratique, on utilise des « Zones de 
résolutions » imbriquées les unes dans les 
autres en divisant la taille de maille par deux 
d’une zone à l’autre jusqu’à obtenir la zone de 
proche paroi qui possède les plus petites 
mailles (et donc le plus grand nombre de 
maille).

Raffinement des maillages



Turbulence et LBM

En LBM le tenseur des contraintes visqueuses est lié à la partie hors 
équilibre des fonctions de distribution:

La viscosité est liée au temps de relaxation:

Ainsi on peut prendre en compte les échelles de sous-maille en ajoutant leur 
dissipation via un temps de relaxation supplémentaire. On peut alors utiliser les 
modèles de sous-maille standard en utilisant les moments d'ordre 2 pour le 
calcul du tenseur des déformations.

Le temps de relaxation dépend alors de l'espace et du temps.



Modèles de collision avancés

En pratique, le modèle BGK n’est pas utilisé pour les écoulements à hauts Reynolds 
car il souffre d’instabilités (Peu dissipatif). Aujourd’hui de nombreux modèles de 
collision existent et permettent de circonvenir aux problèmes inhérents à BGK:

* Modèle MRT (2000): Chaque moment est relaxé à l’équilibre par un temps caractéristique 
propre. La collision se fait alors dans l’espace des moments.

* Modèles entropiques (2003): Basés sur une surrelaxation minimisant l'entropie. Le temps de 
relaxation dépend de l'espace et du temps.

* Régularisation (2006) basées sur une renormalisation de l’équilibre à chaque itération en 
utilisant les DF pour calculer la partie hors éq.

* Moment centraux (2013): Translation des moments par rapport au référentiel du mouvement 
moyen.

* Cumulant (2016): Définition non linéaire des moments (cumulants). Les 3 premiers cumulants 
sont identiques aux moments centraux. Différences à partir des cumulants d'ordre 4.

* Régularisation hybride (2018) basées sur une hybridation de la régularisation classique et 
des polynômes d'Hermite d'ordre 3 et 4 pour la partie hors eq.



Modèles de collision avancés
Principe du modèle MRT: 
Chaque moment est relaxé avec un temps propre

La matrice S est diagonale et contient 
les temps de relaxation (9 pour le 
D2Q9, 19 pour le D3Q19 ...):

La matrice M permet de construire q 
moments : En pratique on peut partir 
des moments conservés et construire 
une matrice orthogonale par une 
procédure de type Gramm-Schmidt.

La collision est effectuée
dans l'espace des moments



Modèles de collision avancés
Principe du modèle MRT: 
Chaque moment est relaxé avec un temps propre

La collision est effectuée
dans l'espace des moments

Les moments à l'équilibre sont soit calculés 
simplement à l'aide de M:

Soit calculés pour optimiser la stabilité 
(Analyse de stabilité linéaire)

Les coefficients de transport sont reliés à 
différents temps de relaxation:



Modèles de collision avancés
Principe des approches régularisées:
formulation de l'algorithme en fonction uniquement de l'équilibre et de la partie hors 
équilibre.

Estimation locale par 
différences-finies

Estimation par 
polynôme et récursivité

Utilisation d'une forme récursive des 
polynômes pour le calcul des a 

Calcul par différences-finies 
centrée d'ordre > 2

4

4



Synthèse et propriétés générales

1. La LBM est d’ordre 2 en espace et en temps.
2. La LBM est un algorithme très rapide et très local très facile à paralléliser.
3. Une seule équation générale permet de décrire l’évolution de toutes les 

grandeurs macroscopiques => Rapidité de calcul
4. Le schéma LBM est compressible et très peu dissipatif donc permet l’étude des 

phénomènes acoustiques et aéroacoustiques.
5. Les maillages sont structurés et uniforme donc simple à construire.

6. Etant faiblement dissipative, la LBM peut être instable et particulièrement lorsque 
le paramètre taug est proche de 0.5 (cela correspond à une faible viscosité). En 
pratique certaines techniques permettent de stabiliser la méthode.

7. La LBM est limitée aux écoulements à faible nombre de Mach (<0.3) et 
isotherme. 

8. Nécessite une grande résolution aux parois à cause de la nécessite d'un maillage 
uniforme (pas de mailles étirées dans la couche limite)

Avantages

Inconvénients



1. Introduction 
et aspects 
historiques

Les automates 
cellulaires

Les gaz sur 
réseau

2. 
Fondements 
théoriques de 
la LBM

Physique 
statistique et 
Equation de 
Boltzmann

L'équilibre et les 
collisions

Developpement 
de Chapmann-
Enskog

3. 
Discrétisation 
de l'équation 
de Boltzmann

Les polynômes 
d'Hermites

Les quadratures 
de Gauss-
Hermites

Obtention des 
réseaux 
standards

Discrétisation de 
l'espace et du 
temps

4. Elements 
sur 
l'algorithme 
LBM

Particularité de 
l'algorithme 
Stream & Collide

Conditions aux 
limites 

Rafinement de 
maillage Turbulence Les modèles de 

collision avancées

5. Mise en 
pratique

Tour d'horizon des 
codes LBM

TP 1 : Le pulse de 
pression [d2q4]

TP 2 : Le cylindre 
en écoulement 
Laminaire [d2q9]

TP 3 : La cavité 
entraînée [d2q9]

TP 4 : Le cylindre 
en écoulement 
turbulent 
[d2q9reg]

 Sommaire:



Les codes industriels de la LBM:

PowerFlow

1er Code Industriel créer en 1995 par la société EXA basée à Lexington (MA-USA) et 
racheté par Dassault-Système en 2016.
Très utilisé par l’industrie Automobile (Ford, Audi, Peugeot,….)



Les codes industriels de la LBM:

Code créé en 2010 par des industriels et universitaires Français 
sous l’impulsion de Renault en collaboration avec Airbus, UPMC, 
CNRS et ENS. Il est aujourd’hui commercialisé par la société CS.



Les codes opensources de la LBM:

Réseaux :

- D2Q5
- D2Q9
- D3Q7
- D3Q19

Modèles de collisions :

- BGK
- MRT
- Regularisation
- Entropique

Modèles Physiques :

- Turbulence
- Multi espèces
- Milieu Poreux
- Diphasique

Contributeur Principaux:   🇩🇪🇨🇭
Langage: C++
Site: https://www.openlb.net/

OpenLB

https://www.openlb.net/


Les codes opensources de la LBM:

Réseaux :

- D2Q5
- D2Q9
- D3Q7
- D3Q15
- D3Q19
- D3Q27

Modèles de collisions :

- BGK
- MRT
- Regularisation
- Entropique

Modèles Physiques :

- Turbulence
- Multi espèces
- Milieu Poreux
- Diphasique

Contributeur Principaux: 🇨🇭
Langage: C++, Python
Site: https://palabos.unige.ch/

Palabos

https://palabos.unige.ch/


Les codes opensources de la LBM:

Réseaux :

- Tous
- Construits 
avec Sympy

Modèles de collisions :

- BGK
- MRT

Modèles Physiques :

- Turbulence
- Thermique
- Diphasique

Contributeur Principaux: 🇫🇷
Langage: Python, C
Site: https://pylbm.readthedocs.io

PyLBM

https://pylbm.readthedocs.io/


Travaux pratiques:

TP1: Le Pulse de Pression

1

2

3

4
D2Q4

Programmation du modèle D2Q4 pour la simulation d’un 
pulse de pression et comparaison avec solution 
analytique. Simulation des fentes d'Young



TP2: La Cavité Entrainée.

Programmation du modèle D2Q9 pour la simulation de 
l'écoulement dans une cavité entrainée. 

Travaux pratiques:

1

2

3

4

D2Q9

56

7 8

0

Paroi solide

Vitesse Uniforme



TP3: Le cylindre carré.

1

2

3

4

D2Q9

56

7 8

0
Programmation du modèle D2Q9 pour la simulation d’un 
écoulement autour d’un cylindre carré à bas Reynolds

Travaux pratiques:

Bounce-Back

Neumann Output

Input (NEBB)



TP4: Les modèles régularisés

Programmation du modèle D2Q9 pour les simulations à 
plus grand Reynolds avec l'étape de régularisation ou le 
modèle MRT.

Travaux pratiques:

1

2

3

4

D2Q9

56

7 8

0
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