Introduction aux Méthodes LBM

Simon Mariée
(simon.marie @ cnam.fr)




1. Introduction

et aspects
historiques

2.
Fondements
théoriques de
la LBM

3

Discrétisation
de I'équation
de Boltzmann

4. Elements
sur
I'algorithme
LBM

5. Mise en
pratique

=57 Sommaire:

Les automates
cellulaires

Physique
statistique et
Equation de
Boltzmann

Les polyndbmes
d'Hermite

Particularité de
I'algorithme
Stream & Collide

Tour d'horizon des
codes LBM

Les gaz sur
réseau

L'équilibre et les
collisions

Les quadratures
de Gauss-Hermite

Conditions aux
limites

TP 1: Le pulse de
pression [d2g4]

Developpement
de Chapmann-
Enskog

Obtention des
réseaux
standards

Rafinement de
maillage

TP 2 : Le cylindre
en écoulement
Laminaire [d2q9]

Discrétisation de

TP 3 : La cavité
entrainée [d2q9]

Les modeles de
collision avancées

TP 4 : Le cylindre
en écoulement
turbulent
[d2g9req]




[-5¢7 Sommaire:

1. Introduction
et aSpects Les automates

historiques

cellulaires

Les gaz sur
réseau




Evolution de l'idée de calcul sur réseau
Théorie cinétique des gaz Aspects hiStoriques

Boltzmann u
1872

Hilbert
1912

Chapman - Enskog
1920

Automates cellulaires

Automates Cellulaires
1951

von Neumann

Ulam
1954 ; | il
| Broadwell
' 1964 .
-___:I_,___l Gaz sur Réseau (LGCA)
: |
| Gatignol i HPP
! 1975 | 1973
FHP FCHC
1986 1986

Boltzmann sur Réseau

McNamara & Zanetti
1988

Higuera & Jiménez
1989

LBM - BGK LBM - MRT
Chen - Qian D. dHumiére
1992 1992

He & Luo
1996 Shan et al.
2006




Evolution de l'idée de calcul sur réseau
Les automates Cellulaires

Principe d'un automate Cellulaire:
"Evolution d'un état local en fonction de I'état de son voisinage."

1951: Concept de J.v.Neumann

1969: Zuse: Les lois physique sont discrétes ?

1970: Jeu de la Vie (ConWay)
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Evolution de l'idée de calcul sur réseau
Les gaz sur réseau

Principe des gazs sur reseau (LGCA):
"Mise a jour algorithmique d'une variable entiere pour décrire la dynamique d'un gaz."
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1986: Modéele FHP - .

Y.Pomeau

1987: Modele FCHC
1988: Lien avec I'équation de Boltzmann (McNamara et Zanetti)

1989: Passage a des variables reelles.




Evolution de l'idée de calcul sur réseau

Idée générale:

Les lois physiques sont suffisamment locales pour étre correctement
décrites sur un réseau.

Description mésoscopique engendre des effets a grande échelle.

Lien avec la physique statistique

Objectifs du cours:

Comprendre les liens entre la LBM et I'équation de Boltzmann
Comprendre les spécificites de I'algorithme LBM

Connaitre les forces et les faiblesses de la méthode

Programmer et Appliquer la méthode sur des cas simples en lien avec
la mécanique des fluides.
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Travaux pratiques:

Les Travaux Pratiques sont sous forme de Notebook Jupyter. Les fichiers notebook sont a
télécharger sur le moodle du cours. (fichier .ipynb)

Le principal avantage des notebooks est gu’ils peuvent contenir plusieurs types de contenu comme
du python, du latex, du html.

Les comptes-rendus de TP peuvent donc étre redigés sous forme de notebook.
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-- Introduction a la méthode de Boltzmann sur Réseau --

Etude d'un pulse de Pression
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)’1 Le TP doit étre rendu sous la forme d'un Notebook jupyter en respectant la nomenclature suivan < _ 9
Y .4 TP1_NOM1_NOM2.ipynb 0’ ' N P
N Tous les résultats, discussions, analyses, doivent donc étre inclus dans le fichier. ’ ' u m y

"‘ous pouvez vous familiariser avec les notions de Python utiles pour ce TP dans ce Notebr
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L’équation de Boltzmann

Approche statistique d’'un écoulement:

Fluide = ensemble de particules se 0;\0
mouvant a des vitesses c¢ différentes o ?

Formalisme de la physique statistique :
_ Ludwig Boltzmann

f T f(X7 C, t) 1844-1906
Densité de particules ayant une vitesse ¢ au point x et au temps t. £

L’évolution des fonctions de distribution f est régie par
I’équation de Boltzmann:

of  of Fof _(of
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L’équation de Boltzmann

of  of  FKOf (0f

— Ci— e p
()f 0;!'.3'__ m 0('.1.3'_ ()f -oll
| ' ‘ | ‘ coll
v Y
Propagation des Forces Collision entre
particules extérieurs les particules
négligées

En prenant en compte toutes les valeurs de vitesses possibles pour les particules on
peut facilement remarquer le lien entre la densité du fluide et les fonctions de

distribution:

p= _fdc Somme de toutes les fonctions de distribution en un point.
R3

De maniére analogue, on a:

pu = [ cfdc Vitesse en un point
JR3

1
p{?-|—§p u

1 |

i .. , . T

= c|? fdc Energie interne et énergie cinétique
R3

T
Ce sont les « moments » des.fonctions de distribution



L’équation de Boltzmann

L’'opérateur de collision: Effet statistique des collisions entre particules.

Historiquement Boltzmann défini cet opérateur en considérant les particules

comme des sphere dures et en faisant certaines hypothéses de collision élastiques, |l
arrive au résultats:

(%)mu = / dcs / dS$) o(L2)

=> Forme complexe de I'opérateur. Les hypothéses de construction ne permettent
pas la description des gaz denses (méme l'air).... Pas tres adapté a

I'aérodynamique. Par contre, bon pour la description des gaz de faible densité (haute
atmosphere).

c1 — co|[f(cy) f(ey) — fler) fe2)]

Apreés collision Avant collision

Il faut trouver une autre facon de décrire I'effet des collisions.




L’équation de Boltzmann

5
(F-:)cﬂﬂ - /dcg / A2 (@)

« Quel serait la forme des fonctions de distribution qui annule I'opérateur de
collision ? »

« Que se passe-t-il lorsque le gaz est en equilibre thermodynamique (pas de
collision entre particule) ? »

i i
(a_f) — 0 e—)  9(c)) f(ch) = f9(cr) f(ca)
“/ coll

In f9(ch) + InfeU(ch) = Inf(ct) + Inf(ca)

cy — co|[f(c})f(cy) — fle1)f(ea)]

Apreés collision Avant collision

On peut montrer que les fonctions de distributions a I'équilibre vérifient une propriété
d’invariant de collision. Elles peuvent alors s’écrire sous la forme:

3/2
m m ;
eq : 1t s . e ot <
Y edl=p (Qﬂﬁcg ) exp [— e (c —u) ]

C’est la distr"butign de Maxwell-Boltzmann




L’équation de Boltzmann

En 1954, Bathnagar Gross et Krook, proposent de définir un opérateur de collision
tres simple traduisant le fait qu’apres une collision, les particules atteignent un
équilibre en un temps caractéristique lambda. lls définissent alors:

( ﬁ) — l [ f _ fﬂ@‘] C’est I'opérateur de collision BGK
ot coll A

Dans ces conditions, I'équation de Boltzmann s’écrit:

Jf of 1

4 Y = T feq
Ot T Ox; A f =5

C’est I’équation de Boltzmann-BGK




Le Developpement de Chapmann Enskog

« Quel est le liens entre I'équation de Boltzmann-BGK et les équations de Navier-Stokes ?»

On peut commencer a répondre en constatant que:

~
~

Jf  Jf
ot " om T A
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af ~ of 1 o
ot i o [f U
Of _‘ Of 1 e
ot Ta “Or; [f 1)
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c dc o)
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dpu

Ot

OE

dp . Jpu;

ot Oz,

Equation de continuité
(conservation de la masse)

d(puju; + P;j)

+ .
Ox;

O(u..;E +u; Py + q)
aIg

=0

=0

0



Le Développement de Chapmann Enskog

| &
P, = / (c; — u;)(c; —uj) fde i = 9/ (ci — u;)|c — ul*fdc
R3 L = JRA

Probleme: P et g dépendent des fonctions de distributions. On ne peut donc pas calculer
explicitement leur valeur.

Pour ¢ca, Chapman et Enskog proposent une technique de fermeture en développant les
fonctions de distribution en terme du nombre de Knudsen.

L Aov Ty Exprime le rapport entre le libre parcourt
Le ’I(Von;br e de e — T 1 moyen des particules et une dimension
nudsen / ' caractéristique.

“e —°

L Le libre parcourt moyen défini la distance
e, @ moyenne durant laquelle les particules ne
\ subissent aucune collision
L 0 >
€ >1 peu d’effet des collisions sur € <1 fort effet des collisions sur I'obstacle
I'obstacle (gaz dense)

_ _ {gazdefaibledensité) _ _ _ _ _ _ _ _ 2 e s e o ____



Le Développement de Chapmann Enskog

On peut faire apparaitre le nombre de Knudsen dans I'éguation de Boltzmann-BGK en
utilisant des grandeurs sans dimension:

_ T ) T )
fog Yo oA Lo ¢ f:i
L L AO T() \/m 0
L T
“TIT T L
of . of 1 .= 2
—~ + o = ——=|f — [
ot dr; e\




Le Développement de Chapmann Enskog

of _ of 1
.—Jf T C 1—-f = [
ot Jx; )

Développement en nombre de Knudsen des fonctions de distribution:

f=fO pef®yp 2@

On peut alors injecter ce développement dans I'égquation de Boltzmann-
BGK en gardant les termes d’ordre O et 1 et identifier les termes de méme
ordre en epsilon:

Termes en E_l : f(U} — ff'?
) (0) ) (0) '

Termesen ¢V - ‘ t'};t 1 @f{ — _%ffl}
C dx; )
9 (1) 7 £ (1) 1

1. {Jf ¢ f (2)

Termes en € -+ 5 — — .

'f_) t (:) ‘112'_ ,-}\ f




Le Développement de Chapmann Enskog

Ainsi a I'ordre 0 en epsilon on trouve

Que I'on peut expliciter puisqu’ils dépendent cette
PE - f (6 —w)ic;— o) ¥ de fois de la fonction d’équilibre (qui est connue), on
R3 trouve:

1 :
g = 5] (¢; — w;)|lc — ul*fdc
R3

I
I
I
P = pri1'0;; I
I
¢ =0 I

I

I

Et a I'ordre 1 en epsilon on trouve

I I
I I
I On trouve cette fois: I
I I
I I

(1) _ p0 / (1) - ¢
PPk e/ (c; —u;)(c; —uq) frdc (1) 5 Ou; — Ou, 2 L Oug,
% el = S . P = poj; — 7pr’T +—2L | - ZrprT—
R3 v J p dr; Oy 3 P dxy,
1 ; , o
q_gl} = g? +e= (c; —u;)|e — uszmdc w_ D+2_ _orT
3 e ' =Tl

=> On retrouve les équations de Navier-Stokes en posant: |

D+ 2
| = 7pr’T Coeff de viscosité o= —5—Tpr T Coeff de diffusivite |

l . Z therm/que |




Le Développement de Chapmann Enskog
Conclusion:

- Les eéquations d’Euler sont une approximation de I'equation de
Boltzmann-BGK a l'ordre O en nombre de Knudsen.

- Les equations de Navier-Stokes sont une approximation de
I'équation de Boltzmann-BGK a I'ordre 1 en nombre de Knudsen.

Les équations de la mécanique des milieux continues sont valables pour les
faibles nombres de Knudsen
c’est-a-dire
pour les milieux suffisamment denses par rapport a la taille de I’objet étudié.
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Les polyndomes d'Hermite

x =[x 51"

. . —x2 ; ) a7 gl
Version scalaire: w(x) = e Version vectorielle: w(x) = e X? = ¢~ W )2

|
I
|
w 1 @ ' .
Hilwlh=+{—1} o) A w(x) : H,(x) = (=1) TX)V @(X)
:
|
|
|
I
Ho(x) = : Hy([x,y]) =
Hi(x) = I
| —
HQ(X) - : Hl([x9 y]) T
H3(x) = |
Ha(x) = i Ho([x,y]) =
I
|
|
|
|
|

o
®



Les polyndomes d'Hermite

Version scalaire: w(x) = e 2
1 4
n =l —1 #
H,(x) = (-1) T w(x)

H[)(x) =3 |
Hilx)==x
Hy(x) =x*-1

H3(x) = x> — 3x

Hi(x) =x*+6x>+3

&

X = [x,y]"

. . %2 S 57
Version vectorielle: w(x) = ¢™*/* = ¢~ 12

1
H,(x) = (=1)" o) V" w(X)




Les polyndomes d'Hermite

P s ot
eq .u, T, c) = (c—u)“/(26)

0 = kpT

Idée de Grad (1949): Déevelopper la distribution d'équilibre en polynébmes d'Hermite.

— 1
f““p,u,T,c) = w(c) 2, _,a(”)’eq(P,u, T)- H™(c)
I
n=0

a(p u, T) = / fé(p,u,T,c)H™ (c)dc

On peut facilement montrer que les premiers coefficients correspondent aux
premiers moments de la fonction d'equilibre.

a4 (p,u,T) = p
a"(p,u,T) = pu

3(2)’eq(p, u, 7) = pluju; + (0 — 1)6;1
o0 .



Les polyndomes d'Hermite

Exemple developpement a l'ordre 2:

£e1 = w(c) (a(O),eq CHO 4 ges L 1 4 L@ H(z))
2

feq = pa)(C) (1 + c;ju; + %[uiuj + (0 — 1)5zj][cicj s 51.]])

f = pw(e)P(c)

Hypothése isotherme: 6 = 1

£ = pw(c) (1 + cill; + %[uiuj][cicj = 5ij])

o [c - u]? u’
fq_pw(c)(l+c-u+ > —7)




La quadrature de Gauss-Hermite

abscisses
Si N<2n-1 X HM(x,) =0

A Polynémes scalaires
+o00 i
/ w(xX)PM) (x)dx = Z w, PN (x,)

/ a=1

2 .
w(x) = e X2 poids
n!

T (H"D(x,))?

Wq

On peut donc trouver des vitesses discretes Ca telles que:

q
alhed — / FUH™ (c)de = / pw(e)Pe)H"™ (c)de = p 2 woP(cgYH™ (c,)

a=1

[c-u]* u? eq . [c, -u]” u
f"—pw(C)(1+c-u+ 5 —2) ‘ Ja _pwa(l+ca'U+ 5 %




Discrétisation des Vitesses

of  of 1

95 . 915 Loy
ot T O, )\“ I

But: Résoudre numériquement I'équation de Boltzmann-BGK !

Probléme: Les variables creprésentent les vitesses des particules et varient

dans un espace continue de dimension infini (toutes les valeurs réelles
possibles)

Condition: Il faut donc restreindre I'espace des vitesses a un ensemble discret
et fini !

Comment ?: En utilisant un développement polynomial de la fonction d’équilibre
et une quadrature de Gauss. Il faut donc assurer I'égalité des moments
continues et discrets:

Moments continues Moments discrets
|
! ‘ ! Nombre de
q vitesses
/feq H(n) (C)dc = p Wy p(ca )H(”) (Ca) discrétes
a=1

| )
T

$olutions de Ia quadrature de Gauss-Hermite




Discrétisation des Vitesses

Les vitesses discretes sont donc obtenues en résolvant la quadrature de Gauss. En
pratique on utilise un produit de D quadratures 1D pour résoudre un probleme a D
dimension. Il existe plusieurs solutions entrainant différentes valeurs de g (Cf TPO)

On obtient toujours qP° vitesses discretes ou D est le nombre de dimensions

d’espace.

v g=5 : Egalité des moments jusqu’a I'ordre 4 => 125 vitesses discrétes qui
dépendent de la Température => Non acceptable.

Hypothese isotherme:

v' g=4 : Egalité des moments jusqu’a I'ordre 3 => 64 vitesses mais incompatibilité de

maillage cubique.

v' =3 : Egalité des moments jusqu’a I'ordre 2 => 27 Vitesses mais erreur sur les

moments d'ordre 3:

> O(M?)

Ju; . du;
Tii = 1| = — |-
] l’jIj !'__}Ii_

Dpuu;uy,

{) T

Limitation a I'étude des
écoulements a faible nombre de

e Mach (faiblement compressible)



Discrétisation des Vitesses

Ca W D=1 D=2 D=3
0 1
Moments conservés
jusqu'a I'ordre 1 +1 1/2 — D1Q2 — D204
Moments conservés 0 2/3 | D1Q3 D2Q9 D3Q27

jusqu'a I'ordre 2 -+ \B 1/6

En pratique on s'arrange pour que les vitesses discréetes coincident avec des points de

maillages:
[c, -u]> u?
Ca Ca Tl =pwa(1+ce-u+— —

Cy = = 2 2
lleall o
u = —

leall ~ G o

Cy, - U C,-u u

aeq:pwa (l-l‘ 12 +[aA4] _ Az)
Co 2C0 2C0




Discrétisation des Vitesses

Ainsi, dans I'hypothese des écoulements isothermes faiblement compressibles, on peut
resoudre I'équation de Boltzmann-BGK a vitesses discretes:

af. af. 1
- T Chi—— = | Ja — E.q
ot o t"__)l‘i_ T [f fa ]

Ou la fonction d’équilibre s’écrit:

2 2
C, - U C, - u u
Co 26’0 2C0

Les coefficients dépendent du modele choaisit.
Les moments se calculent alors facilement de facon discreéte:




Discrétisation des Vitesses

En 3D, on peut montrer que certaines vitesses du modele a 27 vitesses ne « servent »
a rien. On peut alors utiliser 19 vitesses seulement, c’est le modele D3Q19 (3
dimensions et 27 vitesses)

v | 2-7 8-19

Les coefficients sont alors donnés par:
(0,0,%1) (0,1, =1)

. — o | (0.0.0) | (0,£1,0) (£1,+1,0)
{ _of v (£1,0.0) (£1,0,£1)
‘8 r- | 1 1 1
15 5 ¥ 16 Wy § 18 i
14 v L
! 13 . ~ :—-j_'_ 1
(\_} " Quadrature d'ordre 3: ‘ co=Vrl = 7
: D3Q19
0 . 3
e \ V - 2 2
FE(x, 1) = o (1 Buen + o (we,)’ — Ju




Discretisation de I’espace et du temps

Ofea  Ofa cq Equation de Boltzmann-BGK a vitesses
ot T Ca or; _;[fﬂ — 1] discretes mais continue en espace et en temps.

Certaines études utilisent les méthodes de discrétisation classiques (schéma en espace et en
temps avec différences finies ou volume finis). Mais on peut remarquer que le membre de
gauche de I'équation est linéaire et représente une équation de propagation. Ainsi on peut utiliser
une discrétisation dans laquelle I'espace et le temps sont couplés, traduisant le fait que les
particules se déeplacent a une vitesse caractéristique c¢. On obtient alors:

At
fa(Xx + oAt t +At) — fo(x,1) = — /0 fa(x +cas t+5) — fLUX+cps, t+ s)|ds
couplage \ J

Calcul de I'intégrale avec la méthode des trapézes
+ changement de variable

At
QQ(X- IL) = fa{x-f) + ?(fa(x t) — f:;q(x f))
Equation de Boltzmann sur réseau (LBM pour Lattice Boltzmann Method)

At

g

Ja(X + c At T+ At) = go(x. 1) — [Qa-{X-f) _ E?f(x- f)] 1 O[QI‘B}

'rg:'r—l—g et gid = f24




Discreétisation de I’espace et du temps

At o __

g

En pratique, la LBM fixe un certain nombre de A:r_l

parametres :

V' Lavitesse du son liée au réseau s'exprime sous la

form — 1
co=VrT =

—

V3

v Le fluide simulé posseéde donc un coefficient

gamma égale a l'unité. Ceci n’est pas tres restrictif sous

les hypotheses de faible compressibilité La LBM impose (par construction)
un maillage structuré uniforme
carré en 2D ou cubique en 3D




Discrétisation de I’espace et du temps

- . 1 .
Jali +Ca.t +1) = gali.t) — F(.gflﬁ(?" t)—g
'g

(i, 1))

L’algorithme de la LBM s’écrit en unité réseau (Lattice Unit): At

—_—

Ar =1

On choisit de faire une simulation dans un domaine L comportant Nx mailles
d’'un fluide de viscosité donnée nu. La vitesse du son est également fixée a cO.

On a donc: Fixé m—————————— .
= m === 1 ! At Ax !
| L | | — I
I covV 3 |
: Ar = N ' Permet de calculer ! 0v3 :
I Vg : I
. | ) |
| : | :
| _Aux Ax | | 5Y .
0= R = s Lo~ vv3 1
| . 19T A 5 |
b o e e o o = == | b = = = - '3_ IED_ - _2 N
Consequence: Le CFL est toujours CFJ = ¢ At o~ At o~ 1 0.577
constant et vaut: / = €0 —A C() —5 =y = —ﬂ ~ 0.5
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Algorithme LBM

N . 1 . i
I (f +Cart+1) = ga (F t) — ?(.gct (F t) — qf;,q (3 t))

g

On décompose l'algorithme principal en 2 étapes bien distinctes:

La Collision

1 . Cette &
coll ¢+ . . . eq ;- ette étape est locale elle ne
Sa (i,1) = 8(1(1, i — == (ga(l, f) — Sa (1, I)) nécessite aucune lecture des
Tg voisins. Elle est donc trés
rapide.

La Propagation
g+ Ct+1)=goG ) ou Lali,t) =g —Cq, 1 — 1)

Bien que ces deux étapes soient theoriquement identiques, elles présentent des différences
d'exécution en fonction du type de machine utilisée.

Ce type d'algorithme "Stream & Collide" présente une efficacité redoutable sur les
machines modernes.




Algorithme LBM

107Ny,
Evaluation des temps de calcul de l'algorithme: #n = T MLUPS
& Mega Lattice Updates Per Second
Ny, = Np X N
Nombre de points Nombre d'itérations

La Collision

— . 1 . eq .
gEIU”(Ia ‘t) — ga'(la I) _ TI (ga(la f) T gaq(la I)) }7[,‘{?” s lo%ﬂf{)f
8

La Propagation

g+ Ct+1)=goG ) ou Lali,t) =g —Cq, 1 — 1)

Hprop ™~ 60%’73‘0?




Algorithme LBM

Algorithme générale:
1. Initialisation du domaine physique (rho et u)
‘eq
2. Calculde [
3. Initialisation des fonctions de distributions: (o = f;q

4. Boucle temporelle

8
Propagation ga(i + Ca, 1+ 1) = g&"(i, 1)
Calcul des conditions aux limites

Calcul des moments P= Z fa pu = Z Cafa

o

Calcul de I’équilibre: ]‘;q(x t) = pwa (1 + 3u.c, +

.

2

fai coll ¢ ; : 1 . eq -
Collision ga (i,1) = ga(i, 1) — T:(ga(ls 1) — g (i, 1))

(u.ca)g —




Collision et propagation

Etat pre-Collision

Exemple avec 4 vitesses: N
Itéeration n

-t - —p

(i,j+ 1)
‘T 8al(i, 1)
-~ - -> < > < -
(i—1,j) (@) i+ 1,)
\ 4
('i»j_ 1) T
|
|
&

Calcul de 'opérateur de collision en chaque point =3 Leg nouvelles fonctions de distributions sont connues




Collision et propagation

. . 1 _
Collision B = et~ = (8aG, D) — 84'G> 1))
5

Exemple avec 4 vitesses: N
Itéeration n

- - =

(i,j+ 1)
7'y
S G
D e > 1 = =>
(i—1,j) (@) i+ 1,)
\ 4
(']'».] - 1) ?
|
|
{

Calcul de 'opérateur de collision en chaque point =3 Leg nouvelles fonctions de distributions sont connues




Collision et propagation
Propagation goli, ) = g% i —C5,t— 1)

Exemple avec 4 vitesses: N
Itéeration n

(Gj+1)

J iE—tmt—1)
< > - — < —

(i—1,j) UJ)[ i+ 1,j)

(l’.] - 1)




Collision et propagation

Etat pre-Collision

Exemple avec 4 vitesses:

-t — —p

(i,j+ 1)
‘T 8al(i, 1)
< o . 2
(i—1,j) (@) i+ 1,)
\ 4
('i»j_ 1) T
|
|
&

Itération n+1

Propagation des fonctions sug les mailles voisines



Conditions aux limites

Aux frontieres du domaine de calcul (paroi, entrée, sortie...)
certaines fonctions de distribution sont inconnues.

paroi

paroi

En LBM les conditions aux limites doivent prescrire les

guantités mésoscopiques aux frontieres du domaine.
[ o




Conditions aux limites

Aux frontieres du domaine de calcul (paroi, entrée, sortie...)
certaines fonctions de distribution sont inconnues.

paroi

b)
y -

]

paroi

En LBM les conditions aux limites doivent prescrire les

guantités mésoscopiques aux frontieres du domaine.
[ o




Conditions aux limites

Plusieurs techniques sont utilisées:

1 — Conditions périodiques:  8a(i,t) = g&!(i — Tq, t — 1)

A4

Les vitesses rentrantes deviennent les vitesses sortantes a I'opposé du domaine.
0 ¢




Conditions aux limites

2— On remplace les fonctions inconnues par leur symetrique a la paroi

avant la collision (Bounce-back method):

?
6 e . ’5
3 ....... > 1
0"

N
e
o0

Rebond sans frottement:

1'=3
5'=6
8'=7

2
6 A . ’5
3 ------- ’ 1
0.‘

Rebond avec frottement:
1'=3
5=7
8'=6




Conditions aux limites

3— On remplace les parties hors-équilibre par leur symeétrique (Bounce-
back hors equilibre):

neq _  neq
S0 TG Vitesse symétrique

8« —8a =8z — 82

8« =gz +(ga' — &)

/

Nécessite la connaissance des grandeurs
macroscopiques a la paroi.




Conditions aux limites

Calcul de la densiteé a la paroi:

2
6 4
3

Connues Incqnnues
[ A 2 ¢ A I | 1
By Yo = Yo Y+ Y
a ag a; o
B =" Y Gagh— D B8~ ) Bk
oy oy,

o

z g; = Pwlty + Z ggr
a ax

o = w42 3 b+ 3 g
ay a;




Conditions aux limites

3— Techniques utilisant une fonction d’équilibre modifiée a la paroi:

- On prend une valeur particuliere de taug=1 a la paroi:

. . 1 . " S _
goli + Cot +1) = galit) = =(ga(i.t) — gi2(i.1))| D) | g0 (i + .t +1) = gi(i.t))

g o~
—

rg =1

- Pour que le schéma reste juste, on définit une nouvelle
fonction d’équilibre a la paroi prenant en compte les gradients
amonts. Ju; — Juy,

eqx .. _ e o } ’
g (x,t) = g+ €ep(raca.iCaj—=+ Sa=)
0;173' 0;1? k

- On calcul les coefficients de cette nouvelle fonction d’equilibre
grace a I'égalité des moments.

- On calcul la nouvelle fonction d’équilibre en fixant par
exemple une vitesse nulle a la paroi.




Conditions aux limites

4— Techniques type frontiere immergées (Immersed-Boundary):

On utilise le terme de « forcage » de I'équation de Boltzmann.
L'algorithme devient:

b . 1 . eq . :
gE‘rUH(Ia t) = ga(£9 t) o TI (ga(la t) o gaq(la t)) + S(I(Ia t)
g

Forcage "macro” lié a la

Avec: (Guo et al. 2002) orésence d'une paroi.

—~2
At Gin . KOG = By 05l
om (1 2 (o =T )
2 =2 e
8 CO CO /
Fiod Y 7L
puz o + Z C(X.f'g(.f B E‘E g;/ iy
. it
. &1 z;/ P
53/ _________ E_‘i _____ A
Le terme de forcage est calculé en fonction de la W T T
condition aux limites a imposer et appligué aux points /

voisins de la paroi.




Raffinement des maillages

Les maillages LBM sont toujours structurés et utilisent souvent le raffinement en octree:

Principe:

v Diviser une zone en 4 zones
égales (en 2D) ou 8 zones (en 3D).

v Deux zones adjacentes ont un
rapport de taille 2 au maximum.




Raffinement des maillages

Les maillages LBM sont toujours structurés et utilisent souvent le raffinement en octree:




Raffinement des maillages

Les maillages LBM sont toujours structurés et utilisent souvent le raffinement en octree:

Interpolation temporelle

Nécessité d'interpoler les

nouvelles distributions Interpolation spatiale

db 2 2
4 '}

> = - — > <€ > €
Y 4




Raffinement des maillages
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Raffinement des maillages

Les maillages LBM sont toujours structurés et utilisent souvent le raffinement en octree:




Raffinement des maillages

En pratigue, on utillise des «Zones de Element Size LaBS (mm)
résolutions » imbriquées les unes dans les
autres en divisant la taille de maille par deux
d’'une zone a l'autre jusgu’a obtenir la zone de
proche paroi qui possede les plus petites
mailles (et donc le plus grand nombre de
maille).




Turbulence et LBM

En LBM le tenseur des contraintes visqueuses est lié a la partie hors
équilibre des fonctions de distribution:

Tij — — Z Ca,iCa.j (fcx — fciq) — 2101/6 i
(83

: » ., _ . vv3 1
La viscosite est liee au temps de relaxation: 7, = A T 5
' Arcy 2

Ainsi on peut prendre en compte les échelles de sous-maille en ajoutant leur
dissipation via un temps de relaxation supplémentaire. On peut alors utiliser les

modéles de sous-maille standard en utilisant les moments d'ordre 2 pour le
calcul du tenseur des déformations.

Ve v+ U e 1 Ax2
v=& \%-7) ar
T, =T+ 1, t

Le temps de relaxation dépend alors de I'espace et du temps.  7.(X, 1) ~ S;(X, 1)
[ [




Modeles de collision avancés

En pratique, le modele BGK n’est pas utilisé pour les eécoulements a hauts Reynolds
car il souffre d'instabilites (Peu dissipatif). Aujourd’hui de nombreux modeles de
collision existent et permettent de circonvenir aux problemes inhérents a BGK:

* Modéle MRT (2000): Chague moment est relaxé a I'équilibre par un temps caractéristique
propre. La collision se fait alors dans I'espace des moments.

* Modeles entropiques (2003): Basés sur une surrelaxation minimisant l'entropie. Le temps de
relaxation dépend de l'espace et du temps.

* Régularisation (2006) basées sur une renormalisation de I'équilibre a chaque itération en
utilisant les DF pour calculer la partie hors éq.

* Moment centraux (2013): Translation des moments par rapport au référentiel du mouvement
moyen.

* Cumulant (2016): Définition non linéaire des moments (cumulants). Les 3 premiers cumulants
sont identiques aux moments centraux. Différences a partir des cumulants d'ordre 4.

* Régularisation hybride (2018) basees sur une hybridation de la régularisation classique et
des polynémes d'Hermite d'ordre 3 et 4 pour la partie hors eq.




Modeles de collision avancés

Principe du modéle MRT:
Chague moment est relaxé avec un temps propre

g(x+c,t+1)=g(x,t) - M~!S[m(x,t) — m*(x, t)].

La collision est effectuée
dans l'espace des moments

0 O 0O 0 0O O 0 O
La matrice S est diagonale et contient 0 s 00 0 0 0 0
les temps de relaxation (9 pour le S50 o OF O & D I 0
D2Q09, 19 pour le D3Q19 ...): $. = 1/7, 00 0000 000
S=|0 ¢ 0 0 5 0 O 0 O
O 0 0 O O 0 o o0 o
0O 0 0 0 0 0 s 0 O
/1 1 1 1 11 1 1 1\ e O DD e X
4 -1 -1 -1 -1 2 2 2 2 L CEEOEDA
4 -2 -2 -2 21 1 1 1
61 0-101-1-11 La matrice M permet de construire g
M= 0 -2 0 2 01 -1 -1 1 i E . Coart
0 0 1 0 11 1 -1 -1 moments : En pratique on peut partir
0 0 -2 0 21 1 -1 -1 des moments conservés et construire
o 1 -1 1-10 0 0 O une matrice orthogonale par une
\ 0 0 0 0 01 -1 1 -1/ procédure de type Gramm-Schmidit.




Modeles de collision avancés

Principe du modéle MRT:
Chague moment est relaxé avec un temps propre

g(x+c t+1)=gxt)— M 'Sm(x,t) — m(x,t)]

L []

J
La collision est effectuée
dans l'espace des moments

Les coefficients de transport sont reliés a Les moments a I'équilibre sont soit calculés
différents temps de relaxation: simplement a l'aide de M:
(o (1 1) NS
v = - |——=
: 3\s, 2 m‘ = Mg“
21 1
\ o= 9 5 B2 Soit calculés pour optimiser la stabilité

(Analyse de stabilité linéaire)




Modeles de collision avancés

Principe des approches régularisées:

formulation de l'algorithme en fonction uniqguement de I'équilibre et de la partie hors

equilibre.

Ja(X + co ALt + At) = g2%(x,t) + (

Estimation par
polyndme et récursivité

4
1
eq _ = (k) . ~eq,(k)
go (%, t) = w(ca Z k ' a
k=0
M 1
he k heq,(k
£ 1) = wlea) 3 MO (e) 0
k=0

Utilisation d'une forme récursive des I
polyndmes pour le calcul des a

Ja

neq

At
f= _) gzeq(xa t)

Tg

Estimation locale par

différences-finies

aPTaAL
(x,t) = _ WalTgRl
CS

Calcul par difféerences-finies
centrée d'ordre > 2

9 (Ca,ica,j -

2
Cy (Sij




Synthése et propriétés générales

Avantages

1. LaLBM est d’ordre 2 en espace et en temps.

2. La LBM est un algorithme tres rapide et tres local tres facile a paralléliser.

3. Une seule équation générale permet de décrire I'évolution de toutes les
grandeurs macroscopiques => Rapidité de calcul

4. Le schéma LBM est compressible et tres peu dissipatif donc permet I'étude des
phénomenes acoustiques et aéroacoustiques.

5. Les maillages sont structurés et uniforme donc simple a construire.

— [nconveénients

6. Etant faiblement dissipative, la LBM peut étre instable et particulierement lorsque
le parametre taug est proche de 0.5 (cela correspond a une faible viscosité). En
pratique certaines techniques permettent de stabiliser la méthode.

7. La LBM est limitée aux écoulements a faible nombre de Mach (<0.3) et
isotherme.

8. Nécessite une grande résolution aux parois a cause de la nécessite d'un maillage
uniforme (pas de mailles étirées dans la couche limite)




l=¢=] Sommaire:

TP 4 : Le cylindre
TP 3 : La cavité en écoulement
entrainée [d2q9] turbulent

[d2g9req]

TP 2 : Le cylindre
en écoulement
Laminaire [d2q9]

5. Mise en Tour d'horizon des TP 1: Le pulse de
pratique codes LBM pression [d2q4]




Les codes industriels de la LBM:

j??s DASSAULT

SYHSTEMES

PowerFlow

Solutions Products Services Company Contact

Exa PowerFLOW:
Making beautiful cars
more efficient

learn more

1¢" Code Industriel créer en 1995 par la société EXA basée a Lexington (MA-USA) et
racheté par Dassault-Systeme en 2016.
Tres utilisé par I'industrie Automobile (Ford, Audi, Peugeot,....)




Les codes industriels de la LBM:

AL ProLB

Combining performance with accuracy

PRODUCTS

LICENSING AND SERVICES

TECHNOLOGY . - . . .
ProLB: high-fidelity CFD in exceptional turnaround
RESEARCH AND times
DEVELOPMENT
ProLB is an innovative Computational Fluid Dynamics (CFD) software solution. Based on the Lattice-Boltzmann method, its

SUPPORT CENTER

successfully-validated solver performs inherently transient simulations of highly complex flows with a competitive

turnaround time. ProLB's accurate aerodynamic and aeroacoustic modeling allows engineers to make early design
CONTACT US

decisions that optimize and shorten the product development process.
Code ’c_:ree en 2010 par des industriels et _unlversnal res Francais @ @ ARBUS &S
sous l'impulsion de Renault en collaboration avec Airbus, UPMC, RenAT
CNRS et ENS. Il est aujourd’hui commercialisé par la société CS. U=Mme —
-4 . FASE Ly




Les codes opensources de la LBM: OpenLB

OpenlLB - Open Source Lattice Boltzmann Code

Contributeur Principaux:
Langage: C++
Site: https://www.openlb.net/

Réseaux : Modeles de collisions : Modeles Physiques :
- D20Q5 - BGK - Turbulence

- D2Q9 - MRT - Multi especes

- D3Q7 - Regularisation - Milieu Poreux

- D3Q19 - Entropique - Diphasique



https://www.openlb.net/

Les codes opensources de la LBM: Palabos

Parallel Lattice Boltzmann Solver.
| o <

» <4
Contributeur Principaux:
Langage: C++, Python
Site: https://palabos.unige.ch/

Réseaux : Modeles de collisions : Modeles Physiques :
- D20Q5 - BGK - Turbulence

- D2Q9 - MRT - Multi especes

- D3Q7 - Regularisation - Milieu Poreux

- D3Q15 - Entropique - Diphasique

- D3Q19

- D3Q27



https://palabos.unige.ch/

Les codes opensources de la LBM: PyLBM

@ t= 396255
pyLBM .

Contributeur Principaux:
Langage: Python, C
Site: https://pylom.readthedocs.io

Réseaux : Modeles de collisions : Modeles Physiques :
- Tous - BGK - Turbulence
- Construits - MRT - Thermique
avec Sympy - Diphasique



https://pylbm.readthedocs.io/

Travaux pratiques:

TP1: Le Pulse de Pression

Programmation du modele D2Q4 pour la simulation d’un
pulse de pression et comparaison avec solution
analytique. Simulation des fentes d'Young

L]

»N

34

350 =

300

D204

>1



Travaux pratiques:

TP2: La Cavité Entrainée.

Programmation du modele D2Q9 pour la simulation de
I'écoulement dans une cavité entrainée.

Vitesse Uniforme

1.0

.5

9’\'3"’“(“%’

0.0
0.0 0.2 0.4 .0 .5 1.0
.:‘L’IIL

6 2 5
7'
3¢ > 1
7 ¢ 8
4
D2Q9




Travaux pratiques:

TP3: Le cylindre carré.

Programmation du modele D2Q9 pour la simulation d’un
écoulement autour d'un cylindre carré a bas Reynolds

Input (NEBB)

Bounce-Back

0 ./

W]

Neumann Output

15.0

6 2 5
7'
3¢ > 1
7 ¢ 8
4
D209




Travaux pratiques:

TP4: Les modéles régularisés

Programmation du modele D2Q9 pour les simulations a
plus grand Reynolds avec |'étape de régularisation ou le
modele MRT.

0.0

6 2 5
7'
3¢ > 1
7 ¢ 8
4
D2Q9
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